Соотношение между функциями


  1. sin x = (2tg x/2)/(1+tg2x/2)
  2. cos x = (1-tg2*2/x)/(1+tg2*x/2)
  3. sin2x = (2tg x)/(1+tg2*x)
  4. sin2α = 1/(1+ctg2α) = tg2α/(1+tg2α)
  5. cos2α = 1/(1+tg2α) = ctg2α/(1+ctg2α)
  6. ctg2α = (ctg2α-1)/2ctg α
  7. sin3α = 3sin α- 4sin3α = cos2α*sin α-sin3α
  8. cos3α = 4cos3α-3cos α = cos3α-3cos α*sin2α
  9. tg3α = (3tg -tg3α)/(1-3tg2α)
  10. ctg3α = (ctg3α-3ctg α)/(3ctg2α-1)
  11. sin α/2 = ±√((1-cos α)/2)
  12. cos α/2 = ±√((1+cos α)/2)
  13. tg α/2 = ±√((1-cos α)/(1+cos α)) = sin α/(1-cos α) = (1+cos )/sin α
  14. ctg α/2 = ±√((1+cos α)/(1-cos α)) = sin α/(1+cos α) = (1-cos )/sin α
  15. sin(arcsin α) = α
  16. cos(arccos α) = α
  17. tg(arctg α) = α
  18. ctg(arcctg α) = α
  19. arcsin(sin α) = α ; α∈[-π/2 ; π/2]
  20. arccos(cos α) =  α ; α∈[0 ; π]
  21. arctg(tg α) =  α; α∈[-π/2 ; π/2]
  22. arcctg(ctg α) =  α ; α∈[0 ; π]

arccos(cos α) =

  1. a-2πk; α∈[2πk ; (2k+1)π]
  2. 2πk-α; α∈[(2k+1)π ; 2πk]

arcsin(sin α) = 

  1. a-2πk; α∈[-π/2+2πk ; π/2+πk]
  2. (2k+1)π-α; α∈[π/2+2πk ; 3π/2+πk]

arctg(tg α) = α-πk

  1. α∈[-π/2+πk ; π/2+πk]

arctg(tg α) = α-πk

  1. α∈[πk ; (k+1)π]

  1. arcsin α = -arcsin(-α) = π/2 -arccos α = arctg α/√(1-a2)
  2. arccos α = π-arccos(-α) = π/2 -arcsin α = arcctg α/√(1-a2)
  3. arctg α = -arctg(-α) = π/2 -arcctg α = arcsin α/√(1+a2)
  4. arcctg α = π-arccctg(-α) = -arccos α = arccos α/√(1-a2)
  5. arctg α = -arctg 1/α = π/2 -arcsin α/√(1+a2) = arccos 1/√(1+a2)

  1. arcsin α + arccos = π/2
  2. arcctg α + arctg α = π/2