Соотношение между функциями
- sin x = (2tg x/2)/(1+tg2x/2)
- cos x = (1-tg2*2/x)/(1+tg2*x/2)
- sin2x = (2tg x)/(1+tg2*x)
- sin2α = 1/(1+ctg2α) = tg2α/(1+tg2α)
- cos2α = 1/(1+tg2α) = ctg2α/(1+ctg2α)
- ctg2α = (ctg2α-1)/2ctg α
- sin3α = 3sin α- 4sin3α = cos2α*sin α-sin3α
- cos3α = 4cos3α-3cos α = cos3α-3cos α*sin2α
- tg3α = (3tg -tg3α)/(1-3tg2α)
- ctg3α = (ctg3α-3ctg α)/(3ctg2α-1)
- sin α/2 = ±√((1-cos α)/2)
- cos α/2 = ±√((1+cos α)/2)
- tg α/2 = ±√((1-cos α)/(1+cos α)) = sin α/(1-cos α) = (1+cos )/sin α
- ctg α/2 = ±√((1+cos α)/(1-cos α)) = sin α/(1+cos α) = (1-cos )/sin α
- sin(arcsin α) = α
- cos(arccos α) = α
- tg(arctg α) = α
- ctg(arcctg α) = α
- arcsin(sin α) = α ; α∈[-π/2 ; π/2]
- arccos(cos α) = α ; α∈[0 ; π]
- arctg(tg α) = α; α∈[-π/2 ; π/2]
- arcctg(ctg α) = α ; α∈[0 ; π]
arccos(cos α) =
- a-2πk; α∈[2πk ; (2k+1)π]
- 2πk-α; α∈[(2k+1)π ; 2πk]
arcsin(sin α) =
- a-2πk; α∈[-π/2+2πk ; π/2+πk]
- (2k+1)π-α; α∈[π/2+2πk ; 3π/2+πk]
arctg(tg α) = α-πk
- α∈[-π/2+πk ; π/2+πk]
arctg(tg α) = α-πk
- α∈[πk ; (k+1)π]
- arcsin α = -arcsin(-α) = π/2 -arccos α = arctg α/√(1-a2)
- arccos α = π-arccos(-α) = π/2 -arcsin α = arcctg α/√(1-a2)
- arctg α = -arctg(-α) = π/2 -arcctg α = arcsin α/√(1+a2)
- arcctg α = π-arccctg(-α) = -arccos α = arccos α/√(1-a2)
- arctg α = -arctg 1/α = π/2 -arcsin α/√(1+a2) = arccos 1/√(1+a2)
- arcsin α + arccos = π/2
- arcctg α + arctg α = π/2